HOME TOP UP PREV NEXT 1 2 3 4 5 6 GERMAN MAP Tractatus Logico-Philosophicus 4.46
In the one case the proposition is true for all the truth-possibilities of the elementary propositions. We say that the truth-conditions are tautological.
In the second case the proposition is false for all the truth-possibilities. The truth-conditions are self-contradictory.
In the first case we call the proposition a tautology, in the second case a contradiction.
The tautology has no truth-conditions, for it is unconditionally true; and the contradiction is on no condition true.
Tautology and contradiction are without sense.
(Like the point from which two arrows go out in opposite directions.)
(I know, e.g. nothing about the weather, when I know that it rains or does not rain.)
In the tautology the conditions of agreement with the world -- the presenting relations -- cancel one another, so that it stands in no presenting relation to reality.
(The proposition, the picture, the modem, are in a negative sense like a solid body, which restricts the free movement of another: in a positive sense, like the space limited by solid substance, in which a body may be placed.)
Tautology leaves to reality the whole infinite logical space; contradiction fills the whole logical space and leaves no point to reality. Neither of them, therefore, can in any way determine reality.
(Certain, possible, impossible: here we have an indication of that gradation which we need in the theory of probability.)
That is, propositions which are true for every stat of affairs cannot be combinations of signs at all, for otherwise there could only correspond to them definite combinations of objects.
(And to no logical combination corresponds no combination of the objects.)
Tautology and contradiction are the limiting cases of the combination of symbols, namely their dissolution.